
Journal of

Marine Science 
and Engineering

Article

Application of the Forward Sensitivity Method to a
GWCE-Based Shallow Water Model
Evan M. Tromble 1,†,‡, Sivaramakrishnan Lakshmivarahan 2,‡, Randall L. Kolar 1,‡ and
Kendra M. Dresback 1,*,‡

1 School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, USA;
etromble@gmail.com (E.M.T.); kolar@ou.edu (R.L.K.)

2 School of Computer Science, University of Oklahoma, Norman, OK 73019, USA; varahan@ou.edu
* Correspondence: dresback@ou.edu; Tel.: +1-405-325-8529
† Current address: Garver, Norman, OK 73069, USA.
‡ These authors contributed equally to this work.

Academic Editor: Richard Signell
Received: 23 September 2016; Accepted: 1 November 2016; Published: 10 November 2016

Abstract: The Forward Sensitivity Method (FSM) is applied to a GWCE-based shallow water model
to analyze the sensitivity to the numerical parameter, G, that determines the balance between the
wave and primitive forms of the continuity equation. Results show that the sensitivity to G calculated
in the sensitivity evolution portion of the FSM is consistent with the actual sensitivity to G computed
from multiple simulations using finite differences. The data assimilation step in the FSM is shown
to be effective in selecting G that minimizes an objective function, in this case model errors based
on sensitivities. Additionally, the FSM sensitivity results show 2∆x oscillations in the elevation and
velocity fields develop when G is increased too high, suggesting the FSM may be an effective tool for
determining the upper limit of G for real-world applications.
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1. Introduction

The Generalized Wave Continuity Equation (GWCE) [1] is an extension of the Wave Continuity
Equation (WCE) [2], which was introduced to eliminate the spurious oscillations that plagued finite
element solutions of the primitive Shallow Water Equations (SWE). The GWCE contains a numerical
parameter, G, that determines whether the GWCE tends towards a wave equation form (low G) or
the primitive continuity equation (high G). It has undergone rigorous analytical studies, which have
shown that the GWCE is consistent with the primitive continuity as long as the initial conditions
satisfy continuity [1]. However, Kinnmark went on to show that even if that condition is not satisfied
exactly, then the solution remains robust as long as the numerical parameter, G, satisfies some minimal
conditions, e.g., G > 0. Many other studies have shown the superior wave propagation characteristics
of the GWCE, including non-aliased solutions for short waves (e.g., [3]) and low-dissipation for
physical waves (e.g., [4]). In that G is a numerical parameter, akin to a penalty parameter commonly
found in classic finite element methods, there have been numerous studies that sought to identify
an “optimum” value of G (e.g., [5–7]). Additionally, it should go without saying that all numerical
algorithms introduce conceptual errors (e.g., missing physics) and truncation errors into the solution;
a goal of modeling is to minimize the adverse impact of those errors. A big contribution of the
current manuscript is that it goes a step further than previous analyses because the methodology
can be applied to nonlinear problems and because it opens the door for data assimilation, which is
a widely-accepted practice of “tuning” a model to account for missing physics (e.g., subgrid scale
processes). However, in the end, real-world applications over the last 30 years provide the truest
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test of the GWCE. For example, the resulting algorithm is employed in the production version of the
widely-used ADCIRC code ([8–10]), which has a long history of providing accurate, robust results in a
wide variety of applications, including tide- and wind-driven circulation, hurricane storm surge and
inundation, baroclinic transport, sediment transport and coastal dredging feasibility, and larval and oil
spill conveyance settings ([11–17]).

The WCE was first introduced by Lynch and Gray in 1979 [2]; in 1986, Kinnmark generalized
the WCE to the GWCE by introducing a weighting factor, G, that is distinct from the bottom friction
parameter, τ [1]. Kolar et al. [5] found that G has a large effect on model results and that a value G > τ

is necessary to minimize errors. Atkinson et al. [7] analyzed the wave propagation characteristics of
the GWCE-based SWE, and they found that the GWCE-based system is nearly identical to the primitive
SWE, with a quasi-bubble velocity approximation [18], for a specific G parameterization. The dispersion
analysis results of [7] have guided the recent selection of G (cf. [11,16]), where spatially-variable
parameter selection has been employed for diverse applications. However, specification of a value (or
parameterization) for G is an on-going issue.

In general, techniques applied to analyze the GWCE-based system have been limited to linear
analysis (or analysis of the linearized equations), e.g., dispersion and Fourier analysis. These classic
techniques are also limited to constant bathymetry domains and interior nodes. Herein, the Forward
Sensitivity Method (FSM) [19] is applied to analyze the 1D, GWCE-based SWE. In this analysis,
both constant and non-constant bathymetry cases are analyzed. As mentioned in [19], the FSM
builds on sensitivity function analysis (e.g., [20]) and includes an optimization component that allows
observations to be used to correct the model. The FSM is a deterministic data assimilation strategy
for correcting forecast errors when a deterministic model is used in the analysis. Forecast error is
defined by the difference between the model solution and the given (noisy) observation that the model
is supposed to capture in the first place. A model can be either perfect or imperfect. Recall that a
solution of a dynamic model depends on: (a) initial conditions; (b) the values of parameters; and (c)
the boundary conditions. Since these three factors control the evolution of the model solution, these
are collectively called “control”. The goal of FSM is to find corrections to the control so as to drive
the forecast errors as close to zero as possible in the least squares sense. FSM was first reported in
Lakshmivarahan and Lewis [19] and is closely related to the now classic adjoint sensitivity-based
4D VAR method [21]. The FSM-based approach is quite general and can handle both linear and
nonlinear models and can be used to correct the forecast errors due to all three components: initial
conditions, boundary conditions and parameters. A comprehensive account of FSM and varied
applications is given in Lakshmivarahan et al. [22]. The method is applied to analyze a differential
equation describing the air/sea interaction in [19]. In contrast to dispersion analysis, which is limited
in applicability (e.g., linear equations, interior nodes, constant bathymetry), the FSM can be applied to
analyze the non-linear equations at all nodal locations within the domain. The FSM has the added
capability of accounting for boundary conditions, whereas other methods look only at interior points.

While FSM is applicable to non-linear systems, the analysis in this manuscript is limited to the
linear system, with the intent being to present the exploration of a new analysis tool for shallow
water equation models. Application to the non-linear GWCE-based shallow water equations has been
performed [23], and the results will be presented in a subsequent paper. As presented first, derivation of
the equations for the evolution of the sensitivity functions follows [19]. Then, the FSM sensitivities are
analyzed for two domains, which is followed by a validation of the FSM sensitivities with a numerical
analog sensitivity approach. Section 3 begins with the presentation of the methodology, based on [19],
for computing parameter corrections, and concludes with applications for the linear sloping domain.
Section 4 contains the results of a proof-of-concept sequential optimization. Subsequently, a comparison
between FSM and dispersion analysis is presented in Section 5. Finally, conclusions are made based on
the analysis herein.
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2. Sensitivity Function Evolution

2.1. Derivation of Sensitivity Equations

The 1D linear inviscid GWCE and momentum equation are given by Equations (1) and (2), respectively,

ζtt + Gζt + (G− τ)hux − ghζxx = 0 (1)

ut + τu + gζx = 0 (2)

where ζ is the water surface elevation, G is the weighting parameter in the GWCE, τ is the bottom
friction term, h is bathymetry, u is depth-averaged velocity and g is the gravitational acceleration.
Additionally, the subscripts denote partial derivatives, i.e., ζtt is the second partial derivative of ζ with
respect to time.

Application of the continuous Galerkin finite element method, using constant grid spacing, and
a finite difference time discretization results in Equations (3) and (4) for the GWCE and momentum
equation, respectively,

1
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are time-weight parameters subject to α1 + α2 + α3 = 1.0.
The system can be written symbolically, as:

A(G)ck+1 = B(G)ck + C(G)ck−1 + fk+1
bc (5)

where the coefficient matrices A(G), B(G), C(G) ∈ R2n×2n are square matrices with dimensions
of twice the number of nodes, n, for each of the three time levels; the vectors of variables are
ck+1, ck, ck−1 ∈ R2n; and the forcing vector is fk+1

bc ∈ Rn.
The FSM allows calculation of the sensitivity to different aspects of the control, which includes

initial and boundary conditions, as well as physical, empirical and numerical parameters.
Herein, the focus is on the numerical parameter G. The sensitivity to G is the rate of change of
the solution due to a change in G. Given the system described in Equation (5), the sensitivity is found
by taking the derivative with respect to G, as shown in Equation (6).

∂

∂G
[A(G)ck+1] =

∂

∂G
[B(G)ck + C(G)ck−1 + fk+1

bc ] (6)

Application of the product rule, the definition of the sensitivity of the solution to G at a given
time as wk = ∂ck/∂G, and rearrangement yields:

A(G)wk+1 = −∂A(G)

∂G
ck+1 +

∂B(G)

∂G
ck +

∂C(G)

∂G
ck−1 + B(G)wk + C(G)wk−1 (7)

Note that the forcing vector is considered to be independent of G. According to Equation (7),
the unknown sensitivity vector can be computed from the previous sensitivities and elevation and
velocity fields, although ck+1 must be calculated before wk+1. The three time-level scheme requires sets
of sensitivity values at times k and k− 1. Results herein have cold start initial conditions, where the
initial elevation and velocity fields are zero throughout the domain. As such, the initial conditions do
not depend on G, and the initial conditions for the sensitivity to G are w−1 = w0 = [0, . . . , 0]T ∈ R2n.
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2.2. Sensitivity Results for Tidal Problem on the Linear Sloping Domain

The parameters for the test case on the linear sloping domain are given in Table 1. The number of
nodes (and, thus, the grid spacing) was varied, with 11, 21, 41 and 81 nodes, constant ∆x grids being
employed. Additionally, the simulation duration and time step were variable. Finally, both explicit
(α1 = 0,α2 = α3 = 1/2) and implicit (α1 = α2 = α3 = 1/3) versions of the code were assessed.
The differences between the results from the explicit and implicit models (both flow variables
and sensitivities to G) were immaterial over the stable range of G values, although the implicit
α specification allows stability at lower G values than the explicit version (for this test case, the implicit
model was stable at G values two orders of magnitude smaller than the lowest stable value using the
explicit version).

Table 1. Parameters for the linear sloping domain test case.

Parameter Value

Bathymetry at open boundary 20.0 m
Bottom slope 1.25 × 10−4 m/m
Domain length 40.0 km
τ 0.001 s−1

Tidal forcing amplitude 1.0 m
Tidal forcing period 44,714.8 s
Ramp duration 1.0 days

Simulations with each grid, using a G value of 0.001 s−1 were performed for a period of 3.0 days,
with output recorded every 5.0 min for the last day. For the three coarsest grids, ∆t = 1.0 s, while a time
step of 0.5 s was used for the 81-node grid. Nodal elevation and elevation sensitivity to G results at
select locations in the domain are shown in Figure 1. The node number listed on each panel corresponds
to the node number for the location in the 21-node grid. The first panel, labeled “Node 1”, shows
the specified (i.e., Dirichlet) elevation boundary time series. On each panel, there are four solid lines.
Each line shows the temporal evolution of the water surface elevation at the specified location for
a particular domain, corresponding to the 11-, 21-, 41- and 81-node domains. The four solid lines
are overlain on one another because the time series at the boundary are equivalent. Additionally,
each panel has four dashed lines, corresponding to the same grids as for the solid lines. The dashed
lines for Node 1 (along the line y = 0) show that the elevation sensitivity to G is zero, which is due to
the elevation boundary condition being independent of G.

The second panel, labeled “Node 3,” shows results 4.0 km into the domain. For this test case,
the elevation time series is independent of ∆x, as is evident by the indistinguishable solid lines.
However, the magnitude of the elevation sensitivity to G is dependent on grid resolution, with the
magnitude decreasing substantially with increased resolution. The reduction in sensitivity to G with
increased grid resolution (i.e., smaller ∆x) suggests that a solution with only a limited dependence
on G can be obtained for this domain if sufficient resolution is utilized. Additionally, the timing of
the sensitivity is consistent for the different grids, with co-located zero sensitivity values, which are
approximately 90 degrees out-of-phase from the zero elevation values.

Similar general trends hold for elevation and elevation sensitivity to G time series in the middle
(“Node 11”) and on the right side (“Node 21”) of the domain. Again, the elevation time series
are indistinguishable. However, the magnitude of the sensitivity to G is highly-dependent on ∆x.
Additionally, the magnitude of the sensitivity to G, as well as the amount the elevation and elevation
sensitivity time series are out-of-phase depend on the location in the domain, with the magnitude and
the phase difference increasing with distance from the ocean boundary.
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Node 21

11-Node Elevation

11-Node Elevation Sensitivity

21-Node Elevation

21-Node Elevation Sensitivity

41-Node Elevation

41-Node Elevation Sensitivity

81-Node Elevation

81-Node Elevation Sensitivity

Figure 1. Elevation (m) and elevation sensitivity to G (ms) for different simulations on the linear
sloping domain, with each simulation using a different resolution grid (11-node, black; 21-node, red;
41-node, green; and 81-node, blue). The solid lines depict the elevation results, while the dashed lines
show the temporal evolution of the sensitivity of the elevation to G. The node number listed in the title
for each panel is the node number in the 21-node grid associated with a given location.

Figure 2 shows the velocity equivalents to the elevation results shown in Figure 1. At the ocean
boundary, the velocity results are slightly dependent on ∆x. Additionally, it is noteworthy that there
is a relatively large sensitivity to G at this location. The elevation value is specified at the boundary,
so changes to velocity resulting from changes to G result in changes to the amount of mass entering
and exiting the domain at the open boundary throughout the simulation. For the other locations in
the domain, the velocity time series overlay one another. The velocity sensitivity to G at the ocean
boundary shows that, regardless of grid resolution, the velocity is highly dependent on the choice of G,
which has significant implications on global mass balance, as noted in [5]. Throughout most of the
domain, the phase shift of the velocity sensitivity to G is independent of ∆x, as was the case with the
elevation results in Figure 1; the location denoted by “Node 3” is the aberration, as there is a phase
shift for the velocity sensitivity for different grid resolutions. Furthermore, as with the elevations,
the magnitude of the sensitivity to G decreases with increasing grid resolution, and the sensitivity is
lower in magnitude the closer to the land boundary where velocity is specified.
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21-Node Velocity Sensitivity

41-Node Velocity

41-Node Velocity Sensitivity

81-Node Velocity

81-Node Velocity Sensitivity

Figure 2. Velocity (m/s) and velocity sensitivity to G (m) for different simulations on the linear sloping
domain, with each simulation using a different resolution grid (11-node, black; 21-node, red; 41-node,
green; and 81-node, blue). The solid lines depict the velocity results, while the dashed lines show the
temporal evolution of the sensitivity of the velocity to G. The node number listed in the title for each
panel is the node number in the 21-node grid associated with a given location.

In order to assess the impact of different G values on the sensitivity of the solution to G, the implicit
version of the code was used, with a ∆t of 5.0 s, for simulations with G values of 0.00001, 0.0001,
0.001, 0.01 and 0.1 s−1. Additionally, the simulations were 10.0 days in duration. The sensitivity
values over the last two days of the simulation, for Nodes 2–7, are shown in Figure 3. The gaps in
Figure 3 correspond to times when the sensitivity value is below the minimum ordinate value (which is
just greater than zero) on the plot, although generally, these instances correspond to times when the
sensitivity is negative for the current set of simulations.

Increasing G results in a decrease in the magnitude of the peak sensitivity. To a lesser extent,
increasing G changes the timing of the sensitivity. Specifically, when G is increased from 0.00001 to
0.0001 s−1, there is a small decrease in the magnitude of the peak sensitivity and a shift in the timing, so
the peak sensitivity occurs earlier. For the even-numbered nodes, these trends continue for subsequent
increases in G, although the decrease in sensitivity magnitude is more prevalent than the shift in timing
of the peak. In contrast to the results for the even-numbered nodes, the sensitivity results for the
three highest G values at the odd-numbered nodes are not coincident in time. Specifically, at Node 3,
the results for G values of 0.01 and 0.1 s−1 show a phase shift compared to the G value of 0.001 s−1.
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For the same set of simulations (varying G value), the velocity sensitivity to G follows the same general
trends as the elevation sensitivity.
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Figure 3. Elevation sensitivity to G, for simulations with different G values, at different locations on the
21-node linear sloping domain. The five different lines on each plot correspond to the five simulations,
each with a different value of G as indicated in the legend below the figures. (a) Node 2; (b) Node 3;
(c) Node 4; (d) Node 5; (e) Node 6; (f) Node 7.

The GWCE was introduced for CG finite element modeling to control spurious 2∆x oscillations
present in solutions of the shallow water equations using the primitive continuity equation. Increasing
G shifts the GWCE towards the primitive continuity equation. The elevation sensitivity results show
2∆x oscillations in the sensitivity to G for values of the numerical parameter of 0.01 s−1 and larger for
this application on the linear sloping domain, suggesting those values result in the GWCE becoming
“too primitive” for this test case. The decrease in the magnitude of the sensitivity to G as G increases
is consistent with the formulation of the equations. Introduction of non-zero G values results in
the primitive continuity portion of the GWCE contributing. Eventually, as G values are increased,
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the primitive continuity term becomes dominant, and further increases in G will have only minimal
impacts on the solution.

2.3. Sensitivity Results for Tidal Problem over a Seamount

The simulation parameters for this second test case, using a seamount domain, are listed in Table 2;
the values are similar to those used for the case in Section 2.2. The base, 31-node, seamount domain is
shown in Figure 4. The length of the simulations was 5.0 days, and the time step was 5.0 s.

Table 2. Parameters for the seamount domain test case.

Parameter Value

Bathymetry at open boundary 50.0 m
Domain length 60.0 km
τ 0.001 s−1

Tidal forcing amplitude 1.0 m
Tidal forcing period 44,714.8 s
Ramp duration 1.0 days
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Figure 4. Bathymetry and node locations for the seamount domain.

The elevation sensitivity results (not shown), indicate that the general trends present from the
linear sloping domain test case also apply for the seamount domain. Specifically, the magnitude of
the sensitivity decreases with increasing G, and the peak sensitivities occur earlier in time for higher
G values. Furthermore, node-to-node oscillations in the sensitivities occur for the higher G values in
the set, with the 2∆x oscillations readily apparent for the highest G value, 0.1 s−1.

The elevation sensitivity results from the four simulations with different G values are summarized
by the left panel of Figure 5, which shows the peak elevation sensitivity to G, over the last day of the
simulation, for each node in the domain for simulations with different G values (0.0001, 0.001, 0.01,
0.1 s−1). The general trend is for the peak elevation sensitivity to increase with distance from the ocean
boundary. The results with G = 0.01 s−1 show 2∆x oscillations in the magnitude of the peak sensitivity
for a substantial portion of the domain, which is indicative of the GWCE becoming “too primitive”,
even though the sign of the sensitivity does not follow the traditional 2∆x oscillation pattern that
occurs for the highest G values.

The right panel of Figure 5 shows the peak velocity sensitivity to G over the last day of the
simulation for each node in the seamount domain for the four simulations with different G values.
The sensitivity is zero at the land boundary (Node 31); the peak velocity sensitivity increases from
a minimum at the land boundary to a maximum over the seamount (Nodes 16–21), then decreases
oceanward of the seamount. The results with a G value of 0.01 s−1 show short wavelength oscillations
in the peak velocity sensitivity for the majority of the domain. In contrast, the results for the highest G
value, 0.1 s−1, do not show prevalent oscillations in the peak velocity sensitivity landward of the start
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of the rise of the seamount (Node 11). However, a smooth set of peak velocity sensitivity points is not
a sufficient condition to conclude that the G value is below the “too primitive” threshold. Time series
analysis of the velocity sensitivities for the highest G value reveals the node-to-node switching of signs
on the sensitivities, i.e., the positive peak sensitivities for the odd-numbered nodes correspond to the
same times as the maximum negative sensitivities for the even-numbered nodes, and vice versa.
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Figure 5. Peak elevation (left panel) and velocity (right panel) sensitivity to G for implicit runs on the
seamount domain. Each dot denotes the peak elevation sensitivity value, for a given node, over the
last day of a five day simulation. The color of the dot is based on the G value shown in the legend.

2.4. Comparison of FSM and Numerical Analog Sensitivities

The FSM sensitivity results presented previously predict the changes in the solution (elevations
or velocities) that result from a change in the numerical parameter, G. To verify the procedure for
computing the FSM sensitivity, the FSM sensitivity is compared to a numerical analog sensitivity.
The numerical analog sensitivity is computed using finite differences. In particular, by comparing the
results from two simulations with different G values, finite difference approximation of the sensitivity
to G can be calculated using Equation (8),

∂ζ

∂G
≈ ∆ζ

∆G
=

(ζj
k)2 − (ζj

k)1

G2 − G1
(8)

where the subscripts 1 and 2 refer to the two different simulations.
A comparison of the FSM and numerical analog elevation sensitivities to G for Node 11 in the

linear sloping domain is shown in Figure 6. The left panel in Figure 6 is a comparison of the FSM
sensitivity to G (black line), for a simulation with a G value of 0.001 s−1, to the numerical analog
sensitivity (red line) calculated using results from simulations with G values of 0.001 and 0.003 s−1

(∆G = 0.002). The evolutions of the sensitivities have the same shape, although the magnitude
of numerical analog is significantly lower than the FSM sensitivity. The right panel of Figure 6 is
a comparison of the FSM sensitivity to G to the forward numerical analog with a smaller difference in G
values, ∆G = 0.0001 s−1. It is readily apparent that decreasing the difference in G used to compute the
numerical analog reduces the difference between the FSM and numerical analog sensitivities, although
the numerical analog sensitivity is still smaller in magnitude than the FSM sensitivity.
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Figure 6. Comparison of forward sensitivity method and numerical analog elevation sensitivity results
for the last two days of an explicit model simulation on the linear sloping domain. In each panel,
the black line depicts the temporal evolution to the FSM elevation sensitivity to G for a simulation
with G = 0.001 s−1. The red line shows the time series of the numerical analog sensitivities. In the
left panel, the two G values used for the simulations were 0.001 and 0.003 s−1, while G values of 0.001
and 0.0011 s−1 were used to generate the numerical analog for the right panel. (a) ∆G = 0.002 s−1;
(b) ∆G = 0.0001 s−1.

However, this underprediction by the numerical analog is directly related to the choice of G values
used to compute the numerical analog. In this case, the second value of G used to generate the
numerical analog is larger than the value of G for which the sensitivity is desired, which will be
referred to as a forward numerical analog (because G2 > G1, meaning ∆G is positive). The sensitivity
to G decreases with increasing G (c.f., Figure 3), so the forward numerical analog to G is generally
lower than the FSM sensitivity for a simulation with G = G1. Furthermore, for forward numerical
analogs, increasing ∆G increases the underprediction. In contrast, use of a similar backward numerical
analog would show that the numerical analog sensitivity is slightly greater in magnitude than the
FSM sensitivity.

The results presented above show that the sensitivities computed using the FSM are consistent
with the sensitivities calculated using the numerical analog as ∆G goes to zero, and the comparison
confirms that the behavior predicted by the FSM actually occurs in the solution as G varies. As such,
the FSM presents an opportunity to perform data assimilation, explored in Section 3, based on errors
between observations and results from a simulation with a given value of G, although one could
alternatively use a numerical analog approach to compute sensitivities for use in the data assimilation
step. The equivalence of the FSM and numerical analog sensitivities gives rise to the following question:
what is the benefit of FSM over a reasonably simple and straightforward numerical finite difference
calculation? In the case of the constant G simulations presented herein, the two methods would require
similar computational effort. However, for multi-parameter estimation, as is required for spatially-
and temporally-variable G specification, where sensitivities to p variables is necessary, p + 1 ADCIRC
simulations would be necessary to compute the p numerical analog sensitivities (with one base run and
p simulations with a small change in each parameter), whereas the FSM sensitivities to p parameters
can be computed during an individual simulation.

3. Data Assimilation Using Forward Sensitivities

3.1. Data Assimilation Approach

The second component of the FSM is the data assimilation step to correct G using the sensitivities
and computed model errors. As presented in [19], using a first-order approach, where only the first
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term in the Taylor series expansion is retained, the error is equal to the product of the sensitivity and
the correction, as given by Equation (9),

e(x, t, G) = z(x, t)− c(x, t, G) ≈ (∆G)w(x, t, G) (9)

where for spatial location x, time t and numerical parameter value G, e(x, t, G) is the simulation error,
z(x, t) is the observation value, c(x, t, G) is the model result, ∆G is the correction to the numerical
parameter and w(x, t, G) is the sensitivity to G.

The correction can be computed in a variety of ways. The simplest correction uses an observation
at one point in space, xj, at one time, tk, along with the model results for the same location in space
and time. The correction, ∆G, to the value used for the simulation, G0, based on this one observation is
shown in Equation (10).

∆G(G0) =
e(xj, tk, G0)

w(xj, tk, G0)
(10)

Least-squares minimization is a more sophisticated approach that allows for the use of multiple
observations in space or time. For the results herein, least-squares minimization will be applied
on a nodal basis. In other words, the observations and model results for a given point in space,
over a range of time, will be used to compute a least-squares correction to G. This is analogous to
the real-world situation where a buoy collects a time series of water surface elevation data at a fixed
location in the domain. Conversely, least-squares minimization could be applied on a temporal basis
where errors throughout the domain, at a given time, are used to generate a correction to G.

The least-squares correction, based on results and observations for node j using nrecs values in
time, requires the vector of sensitivities Hj and the error vector ej.

Hj = {wj
1, wj

2, ..., wj
nrecs}T (11)

ej = {zj
1 − cj

1, zj
2 − cj

2, ..., zj
nrecs − cj

nrecs}T (12)

The optimal least-squares correction, adapted from [19] for a scalar parameter, is given by
Equation (13).

(∆G)j =
Hj

Tej

Hj
THj

(13)

The optimal least-squares correction is a standard result that is presented in [21], which provides
additional detail about the origins of the analysis technique.

3.2. Correction to CG Results on the Linear Sloping Domain

In this section, “observations” will be taken from model results generated using the 2D CG version
of ADCIRC on a rectangular grid that is uniform in the y-direction. The 2D code was run implicitly
with the same parameters as the 1D code, and the 2D domain consists of 11 nodes in the y-direction for
each of the 21 nodes in the x-direction for the linear sloping domain. Results for the sixth line of nodes
(the centerline) from a simulation with a constant G value of 0.001 s−1 are used as the observations.
Furthermore, the x-component of the velocity from the 2D model is used as the velocity observation;
the y-component of the velocity is ignored, but is generally several orders of magnitude less than the
x-component (and close to zero).

The purpose of the data assimilation step in the FSM is to reduce model error. Therefore, before
delving into the calculations of the corrections, it is informative to analyze model error for a range
of G values. The error metric is the temporal mean of the root mean square error in space, denoted
as RMSEx. The equation for the temporal mean of the root mean square elevation error in space is
shown in Equation (14).
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RMSEx(ζ) =
1

nrecs

nrecs

∑
k=1

(RMSEx(ζ))
k (14)

The elevation error results are shown in the left panel of Figure 7, while the velocity error results
are shown in the right panel.
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Figure 7. RMSEx(ζ) (left panel) and RMSEx(u) (right panel) results, over the last two days of 10.0-day
simulation, for simulations with different values of G on the linear sloping domain, using observations
from the 2D CG ADCIRC model with G = 0.001 s−1.

For the G values used in the implicit 1D simulations, the minimum elevation and velocity errors
are achieved when approximately the same G value is used in the 1D model as was used in the 2D
model (to create the observations). The value of G that minimizes the error (i.e., G ≈ 0.001 s−1) is
the value of G that should be revealed using the data assimilation step of the FSM. When available,
elevation data are often in the form of time series at discrete location. Thus, herein, a time series of
elevation observations will be used to calculate errors, and the correction will be computed using those
errors and the corresponding time series of sensitivity values for a given node, as per Equation (13).

The correction varies for a given run depend on which node is used to calculate the correction.
For example, the corrections based on the results from the simulation with G = 0.0001 s−1 are shown
in Figure 8. The error and the sensitivity of the elevation results to G are both zero at the left boundary
node, so the correction is not computed at that location (Node 1); rather, the correction is set to zero
for plotting purposes. The correction can be calculated for each of the other nodes in the domain,
and Figure 8 shows the correction to be just slightly greater than 0.0001 s−1 for each of the nodes.
However, we know the optimal correction is close to 0.0009 s−1, based on the values of G used for
the runs to generate the model and observation results. The discrepancy between the computed
least-squares correction and the optimal correction (which would result in the new value of G being the
one that minimizes the model error) is a result of the variation in the sensitivity with G, as well as the
fact that only the first order terms are kept in the Taylor series development of the correction equation.
The sensitivity to G is much greater when G = 0.0001 s−1 than when G = 0.001 s−1. Because the
correction varies inversely with the sensitivity, the correction calculated using the sensitivity from the
run with G = 0.0001 s−1 is, expectedly, low.

In order to show how the correction varies with G, the maximum, minimum and mean of
the nodal corrections were calculated. Referring back to Figure 8, which shows a set of nodal
least-squares corrections for the simulation with G = 0.0001 s−1, the maximum correction is from
Node 2, ∆G = 0.000168 s−1, while the minimum comes from Node 9 (∆G = 0.000107 s−1). The mean
correction is the arithmetic mean of the nodal corrections for Nodes 2–21. The results are shown
in Figure 9.
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Figure 8. Nodal least-squares corrections, ∆G, for each node based on results for an implicit simulation
with G = 0.0001 s−1 using output from the last two days of the 10.0-day simulation on the linear
sloping domain. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.

As seen in Figure 9, for a given simulation, the maximum, minimum and mean corrections are
similar for simulations with G values less than 0.005 s−1. Thus, regardless of location in the domain,
the correction is similar, as was the case for the set of corrections shown in Figure 8. Interestingly,
for the simulations with G values less than 0.001 s−1, the corrections are larger for the simulations with
G values closer to the target value, which seems counterintuitive. However, as mentioned previously,
the large variation in sensitivity with G causes under-corrections for simulations with low G values.
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Figure 9. Maximum, minimum and mean nodal least-squares correction, ∆G, for simulations over
a range of G values, using output from the last two days of the 10.0-day simulation on the linear
sloping domain. The magnitude of the correction is shown as the ordinate, while the color of the
dot corresponds to the sign of the correction: positive corrections are shown in black, and negative
corrections are shown in red. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.
(a) Maximum; (b) minimum; (c) mean.
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For the simulations with G values of 0.002 and 0.005 s−1, the corrections are consistent and
negative, as expected. However, the mean correction is larger in magnitude than the value of G
used for the simulation. For example, the mean correction for the simulation with G = 0.005 s−1 is
∆G = −0.289 s−1. In contrast to the corrections from simulations with G values less than the optimal
value, simulations with G values greater than the optimal value have corrections that are too large
in magnitude.

Furthermore, for G values of 0.01 s−1 and above, some of the corrections are positive (indicated
by the black dots on the top left panel in Figure 9), which is opposite in sign from the mean corrections.
The presence of positive and negative corrections for the same simulation is a result of the GWCE
becoming “too primitive”. The initial appearance (lowest G value that experiences oscillations)
corresponds to the G threshold above which spurious oscillations are generated. When the solution
becomes “too primitive”, the sensitivities start to become irregular. Rather than being similar from one
node to the next, the sensitivities for successive nodes are opposite in sign or have varying magnitudes
of the same sign. This transition from a normal pattern of sensitivities to an irregular one produces the
aberrant correction results.

The difference in results for two model simulations is given by Equation (15).

∆ζ =
∫ G+∆G

G
w(x, t, G) ∂G (15)

For G values just greater than G = 0.001 s−1, the sensitivities are similar from node to node.
Therefore, the errors for model simulations with small deviations from the target value used in these
studies will be similar between nodes, as long as G is not increased too much. When G = 0.01 s−1,
there are 2∆x oscillations in the sensitivities. Thus, at some G value between 0.001 and 0.01 s−1,
2∆x oscillations begin to develop in the error values as a result of the oscillations in the sensitivities.

By computing the numerical analog using the target value as one of the G values for the simulation,
the result is the average sensitivity over the span of G values. This average sensitivity can be compared
to the FSM sensitivity, which gives the instantaneous sensitivity value. Figure 10 is a comparison of the
numerical analog sensitivity between G values of 0.001 and 0.1 s−1 and FSM sensitivity for G = 0.1 s−1

for the 11th and 12th nodes in the linear sloping domain. It is readily apparent that the FSM sensitivity
results are opposite in sign for the two nodes. However, the numerical analog sensitivity results are
similar for the two nodes. The notable difference is the magnitude of the numerical analog sensitivities
is larger for Node 12 than Node 11, which implies there is more error for results at Node 12 than Node
11. In this case, the ∆G value used to compute the numerical analog is −0.099 s−1. Therefore, when
the numerical analog sensitivity is positive, the error is negative, and vice versa. It should also be
noted that the FSM sensitivities are, generally, in-phase with the numerical analog sensitivities for
Node 12, whereas the two sets of sensitivities are out-of-phase for Node 11. Therefore, an additional
increase in G away from G = 0.001 s−1 will cause increases in the magnitude of the error at Node 12
and decreases in the magnitude of the error at Node 11.

As mentioned previously, the occurrences of positive numerical analog sensitivities in Figure 10
(e.g., the peak values occurring approximately 8.0, 8.5, 9.0, 9.5 and 10.0 days into the simulation)
correspond to times of negative model error (compared to the simulation with G = 0.001 s−1), and vice
versa. Therefore, 9.0 days into the simulation, the error is negative at Nodes 11 and 12. For Node 11,
the numerical analog and FSM sensitivities are out-of-phase, which means that, generally, when the
FSM sensitivity is positive/negative, the error is positive/negative (numerical analog sensitivity is
negative/positive). Subsequently, the correction to G will be positive, which is the wrong direction.
In contrast, the numerical analog and FSM sensitivities are generally in-phase at Node 12, which results
in the correction to G being negative, because the product of the error and sensitivity vectors is negative.
The corrections to G for each of the nodes are shown in Figure 11. As expected, based on Figure 10,
the correction produced using results for Node 11 is positive, while the correction generated using
results for Node 12 is negative.
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Figure 10. Numerical analog sensitivity (red) between implicit 1D results with G= 0.001 s−1 and
G = 0.1 s−1 and FSM sensitivity (black) for G = 0.1 s−1 for the 11th (left panel) and 12th (right panel)
nodes in the linear sloping domain.

5 10 15 20
!2

!1

0

1

2

Node

G
Co
rre
ct
io
n
!s!1 "

Figure 11. Nodal least-squares corrections, ∆G, for each node based on results for an implicit simulation
with G = 0.1 s−1 using output from the last two days of the 10.0-day simulation on the linear sloping
domain. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.

4. Sequential Optimization

In the previous section, corrections to G were calculated based on model errors and sensitivities
to G. In this section, the correction, ∆G, is added to the previous G value to determine the next G value.
This process is continued until the new correction is below a certain threshold, which signifies that the
optimization process has converged at the target value.

The linear sloping domain is used for this proof-of-concept application, along with the explicit
version of the code. The simulation parameters are the same as those used previously, with the
exception that the run is only 5.0 days long, and corrections are generated using the results from the
last day of the simulation. The observations are the elevation results along the centerline of the 2D
ADCIRC simulation with G = 0.001 s−1. The correction, ∆G, is the mean of the nodal corrections using
the elevation results to compute the errors.

The initial G value for this exercise is 0.0005 s−1, and the convergence threshold for ∆G was
set at 1.0 × 10−10 s−1. As expected, specification of an initial value that is less than the target value
resulted in each correction being in the appropriate direction (positive), with less than the optimal
magnitude, as shown in Table 3. The target value is the value at which the sequential optimization
finishes, 8.98 × 10−4 s−1 (however, it is close to the value of G used in the 2D model to create the
observations, but in practice, this would not be known). The ratio of the correction to the optimal
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correction is notable; as the G value approaches the target value, the correction approaches the optimal
correction. This is logical because as the difference between the current and target G values goes to
zero, the instantaneous sensitivity to G given by the FSM gets closer to the average sensitivity over
the range.

Table 3. Sequential optimization of G for the linear sloping domain compared to the 2D CG simulation
with G = 0.001s−1. The units for each of the columns, except for the fourth column, are s−1. The ratios
in the fourth column are dimensionless.

G Value Mean Nodal Correction, ∆G Optimal Correction, ∆Gopt
∆G

∆Gopt
New G Value, G + ∆G

5.00× 10−4 2.24× 10−4 3.98× 10−4 0.564 7.24× 10−4

7.24× 10−4 1.39× 10−4 1.74× 10−4 0.801 8.63× 10−4

8.63× 10−4 3.28× 10−5 3.46× 10−5 0.948 8.96× 10−4

8.96× 10−4 1.78× 10−6 1.81× 10−6 0.983 8.98× 10−4

8.98× 10−4 3.10× 10−8 3.14× 10−8 0.984 8.98× 10−4

8.98× 10−4 4.81× 10−10 4.88× 10−10 0.986 8.98× 10−4

8.98× 10−4 7.02× 10−12 7.02× 10−12 1.000 8.98× 10−4

Additionally, tests were performed with an initial G value greater than the target value.
As expected, specification of a value larger than the target, but still below the primitive threshold,
results in an over-correction in the first step. For the explicit code with an initial value of
1.20× 10−3 s−1, the mean correction for the first step is ∆G = −3.94 × 10−4 s−1, resulting in a
new G value of 8.06× 10−4. From there, the corrections bring the G value up to the target value.
However, if the initial specification is significantly higher than the target, the over-correction can result
in negative G value. For instance, the mean correction with G = 2.00× 10−3 s−1 is −2.38× 10−3 s−1,
which is larger than the previous G value. Thus, in practice, constraints on G would have to be put
into the optimization algorithm.

5. Comparison of FSM to Dispersion Analysis

Kolar et al. [5] performed a dispersion analysis of the 1D shallow water equations using the
GWCE for the Bight of Abaco, Bahamas. Kolar et al. noted that spurious 2∆x oscillations do not occur
if the dispersion curve is monotonic. In their paper, they delineated the frequency for the M6 tide [5]
(p. 536) and found that the monotonic dispersion relations for this frequency exist as long as G does
not exceed 0.075 s−1. The frequency of the M2 tide is one third the frequency of the M6 tide, so G must
be less than approximately 0.3 s−1 to ensure the solution remains free of spurious, short-wavelength
oscillations for the M2 frequency.

The dispersion analysis performed in Kolar et al. [5] used a bathymetry value of 2.0 m, an element
size of 2700 m and a bottom friction value of 0.01 s−1. For this study, these parameters were also
used in 1D simulations with a flat bottom domain consisting of 21 nodes. The time step for the 1D
simulations was 5.0 s. Larger time steps result in differences in the calculated sensitivities, whereas the
sensitivities were consistent between simulations with time steps of 2.5 and 5.0 s. It should also be
noted that dispersion analysis is restricted to interior nodes. The 1D simulations herein using the FSM
include boundaries that are treated as stated previously (specified elevation on the left, zero velocity
on the right).

For the 1D simulations using the M6 tide, the dispersion analysis predicts spurious oscillations for
G values greater than 0.075 s−1. The elevation FSM sensitivity results are free of 2∆x oscillations with
G = 0.01 s−1. With G = 0.03 s−1, the sensitivity results show 2∆x oscillations for the first four elements
in from the left boundary. However, the interior of the domain is not impacted. Further increase of
G results in oscillations in a greater percentage of the domain.

Using the M2 tide, the dispersion analysis predicts spurious oscillations for G values greater than
or equal to approximately 0.3 s−1. Again, oscillations in the FSM elevation sensitivities to G do not
occur with G = 0.01 s−1 and occur only near the ocean boundary with G = 0.03 s−1. Similar to the
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case for the M6 forcing, the oscillations become more prevalent as G increases, although the M2 forced
simulations generally have less prominent 2∆x noise than the simulations with the M6 forcing. This is
consistent with the results suggested by the dispersion analysis. With a G value of 0.1 s−1, the entire
domain experiences 2∆x oscillations.

The FSM sensitivities and dispersion analysis do not produce exactly the same values of G for the
onset of 2∆x oscillations in the solution. Given the underlying differences in the analysis techniques
(e.g., dispersion analysis is confined to interior nodes and continuous time), this is not an entirely
surprising result. However, the similarity between the results for the two techniques points to FSM
being a useful tool in the analysis of problems where dispersion analysis is not valid (e.g., non-linear
equations, non-constant bathymetry, etc.).

6. Conclusions

The FSM was successfully applied to the linearized, 1D version of ADCIRC with constant G.
The FSM is useful in determining the sensitivity, both in space and time, to G. In particular, the
sensitivity of the elevation and velocity fields to changes in G varies greatly with G. The sensitivity
is much greater at low values of G than at higher values, where the GWCE effectively approaches
the primitive continuity equation. Additionally, as G increases, the sensitivities from the FSM show
the 2∆x oscillations that plague the continuous Galerkin finite element solution when the primitive
continuity equation is used instead of the GWCE. Furthermore, the maximum G threshold, above
which the GWCE becomes “too primitive” and results in the generation of spurious 2∆x oscillations,
can be identified through analysis of the FSM sensitivities. In that sense, FSM can be used as a tool
like dispersion analysis to predict the folding of dispersion relations, with the advantage of being
applicable to complex, real-world problems.

The corrections, ∆G, calculated in the data assimilation step of the FSM are intrinsically tied to
the sensitivities. The change in sensitivity over the range of possible G values makes direct estimation
of the optimal correction difficult using first-order methods. At high G values, the corrections are
also hindered by the 2∆x oscillations in the sensitivities. However, sequential optimization should be
possible as long as care is taken in the specification of the starting point for optimization. Specifically,
use of a low initial value is optimal because the corrections are more stable, compared to higher
values of G.

While this analysis was limited to the linearized, 1D SWE, the FSM has potential use in more
complex systems. Additionally, while the analysis is focused on the sensitivity of the system to G,
the method can be adapted to analyze other parameters of the model.

Acknowledgments: Funding for the project was provided, in part, by the National Oceanic and Atmospheric
Administration—Integrated Ocean Observation System and the Department of Homeland Security Coastal
Hazards Center of Excellence, which the authors gratefully acknowledge. Additional resources were provided by
the University of Oklahoma. Any opinions, conclusions or findings are those of the authors and are not necessarily
endorsed by the funding agencies.

Author Contributions: S.Lakshmivarahan developed the theory of the Forward Sensitivity Method (FSM) and
helped advise E. Tromble (then a Ph.D. student) on that aspect of his dissertation work. R. Kolar and K. Dresback,
advisor and member of E. Tromble’s Ph.D. committee, respectively, provided guidance on the ADCIRC model and
a historical perspective of the G-parameter. They also helped with the composition of the manuscript. E. Tromble
carried out the details of the work as part of his dissertation.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the decision
to publish the results.



J. Mar. Sci. Eng. 2016, 4, 73 18 of 19

Abbreviations

The following abbreviations are used in this manuscript:

FSM Forward Sensitivity Method
GWCE Generalized Wave Continuity Equation
WCE Wave Continuity Equation
ADCIRC ADvanced CIRCulation
CG Continuous Galerkin
1D One-Dimensional
2D Two-Dimensional
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